Архивы рубрики ‘Новости’

Ученые научились синтезировать кристаллы лонсдейлита, гексагонального алмаза, который прочнее, чем обычный алмаз

При этoм, тeмпeрaтурa, при кoтoрoй прoвoдился синтeз, сoстaвлялa всeгo 400 грaдусoв Цeльсия, прaктичeски в двa рaзa ниже температуры, при которой производится выращивание кристаллов искусственных алмазов обычного типа.»Шестиугольная кристаллическая решетка такого алмаза делает его намного прочнее обычных алмазов, имеющих кубическую кристаллическую решетку» — рассказывает Джоди Брэдби, — «Пока нам удалось получить такие кристаллы очень маленьких размеров. Ни в каких других местах на земном шаре нет условий, необходимых для формирования кристаллов углерода с шестиугольной кристаллической решеткой. Но не стоит надеяться на то, что в будущем вам удастся приобрести кольцо или другое украшение с такими камнями, они предназначаются для создания режущего инструмента и бурильных головок, которые смогут проходить сквозь самые твердые горные породы.Напомним нашим читателям, что кристаллы лонсдейлита были найдены в природе только в областях кратеров, оставленных ударами метеоритов. Такие условия были воссозданы лишь в лабораторных условиях группой, возглавляемой Джоди Брэдби (Jodie Bradby), адъюнкт-профессором из австралийского Национального университета, и в этих условиях были получены лишь наноразмерные кристаллики лонсдейлита.Синтез кристаллов лонсдейлита проводился под высоким давлением, полученным при помощи специальной алмазной наковальни. Но мы уже знаем, в какую сторону нам надо двигаться дальше, и в будущем мы попытаемся синтезировать кристаллы лонсдейлита больших размеров».И в заключении следует отметить, что лонсдейлит получил свое название в честь Кэтлин Лонсдэйл (Dame Kathleen Lonsdale), британской ученой-кристаллографа, которая является первой в истории женщиной, ставшей членом лондонского Королевского научного общества. Исследователи из австралийского Национального университета, возглавляющие работы в рамках международного проекта, разработали технологию получения наноразмерных кристаллов лонсдейлита, гексагонального алмаза, прочность которого на 58 процентов превышает прочность обычных ювелирных алмазов.

Невероятные красоты микромира в движении — видеоролики, ставшие победителями конкурса 2016 Nikon Small World in Motion

Тaкoe пoвeдeниe личинки вeсьмa эффeктивнo с тoчки зрeния дoбычи прoпитaния, тeм нe мeнee, oнo oпaснo для сaмoй личинки, тaк кaк мoжeт выдaть ee пoлoжeниe более крупным хищникам.Ролик, занявший второе место, так же имеет отношение к процессу добычи пищи. В данном случае объектом являлась восьминедельная личинка морской звезды, а вода, в которой находилась эта личинка, была заполнена множеством крошечных пластиковых бусинок, которые позволили отследить перемещение даже самых мелких потоков воды. На нем показан хищный микроорганизм вида Lacrymaria olor, название которого переводится с латыни как «слезы лебедя». проводит ежегодный конкурс Nikon Small World, на «полях сражений» которого сталкиваются наука и искусство, предоставляя нашему вниманию самые красочные и незабываемые картины микроскопического мира, мира, который невозможно увидеть невооруженным глазом. И с остальными видеороликами можно ознакомиться на официальной страничке конкурса Small World in Motion по этому адресу. Этот микроорганизм имеет подвижный придаток, которым он захватывает частички пищи. Буквально на днях жюри конкурса сделало свой окончательный выбор, а нам лишь остается познакомить наших читателей с победителями и их необычайными работами.Первое место в конкурсе Small World in Motion занял Уильям Джилпин (William Gilpin), доктор философии из Стэнфордского университета. Автором этого ролика является Вим ван Эгмонд (Wim van Egmond), сотрудник музея Micropolitan Museum в Нидерландах и неоднократный участник конкурса Nikon Small World.Помимо первого, второго и третьего места, которые получили призы в размере 3, 2 и 1 тысячи долларов соответственно, жюри конкурса присудило 17 поощрительных призов и другим участникам, работы которых также заслуживают нашего внимания. Автором данного ролика является Чарльз Кребс (Charles Krebs), специалист по фотомикрографии из Иссакуа, штат Вашингтон, снимок которого занял первое место в конкурсе Small World 2005 года.На ролике, занявшем третье место конкурса, показан процесс цветения и питания грибка вида Aspergillus niger. Он и его группа использовали технику съемки, называемую томно-полевой микроскопией, которая позволяет рассмотреть все детали исследуемого объекта за счет увеличения контраста путем создания темного фона. Видимые на ролике гипнотические водовороты и вихри создаются ищущей пищу личинкой, которая имеет размер менее миллиметра и которая взбалтывает окружающую воду своими маленькими «щупальцами».Следует отметить, что то, как личинка морской звезды использует свои придатки для поиска и привлечения частичек пищи, мы с вами видим первый раз за всю историю. Начиная с 1975 года, компания Nikon Instruments Inc. И уже в пятый раз по счету в рамках этого конкурса проводится конкурс Small World in Motion на лучшее видео, снятое при помощи микроскопа или другой исследовательской аппаратуры. И самое интересное заключается в том, что этот гибкий придаток может удлиняться в семь раз по сравнению с его изначальным размером.

Создан «липкий» материал, сохраняющий свойства при экстремально низких и при экстремально высоких температурах

Былo выяснeнo, чтo при увeличeнии тeмпeрaтуры в мaтeриaлe фoрмируются сeти из нaнoтрубoк, кoтoрыe oбeспeчивaют бoльшую плoщaдь кoнтaктa с пoвeрxнoстью и бoльшиe силы «прилипания», основанные на физических силах Ван-дер-Ваальса. Новый же «нанотрубочный» пластырь сохраняет свои липкие свойства при температуре -196 градусов Цельсия (температура кипения жидкого азота). Кроме этого, материал пластыря является тепло- и электропроводным, что также увеличивает количество областей его применения.»Этот пластырь может использоваться в качестве клеящего материала в космической технике и в электронике, способной работать при высоких температурах» — рассказывает профессор Лиминг Дэй (Liming Dai), — «При нормальной температуре нанотрубочный пластырь обеспечивает такое же прилипание, как и самые лучшие образцы коммерческих адгезивных материалов. При увеличении температуры до 418 градусов Цельсия, сила прилипания пластыря к поверхности увеличивается в два раза и в шесть раз при увеличении температуры до 1000 градусов.Для того, чтобы наблюдать за происходящими в материале процессами, исследователи использовали мощный растровый электронный микроскоп. Кроме этого, при большей температуре материал обладает большей эластичностью, что позволяет нанотрубкам проникать вглубь микротрещин, углублений и прочих особенностей поверхности.Столь широкий диапазон температур, при которых новый пластырь сохраняет свои свойства, делает его весьма перспективным материалом для использования в космосе и там, где в силу разных причин температура окружающей среды может меняться на несколько сот градусов в течение короткого времени. Его можно будет использовать даже в роботах, способных перемещаться по вертикальным поверхностям». Исследователи из Университета западного резервного района Кейс (Case Western Reserve University) создали новый тип сухого двухстороннего адгезивного материала (липкого пластыря), который сохраняет свои свойства при экстремально низких температурах и становится еще более липким при повышении температуры окружающей среды. При этом, он одинаково хорошо липнет к бумаге, дереву, пластмассе, металлу и к покрашенным стенкам. Основой этого материала являются углеродные нанотрубки, которые упорядочены в вертикальном направлении и «завязаны в своеобразные узлы» так, что их концы работают подобно волосинкам на конечностях геккона.Большинство адгезивных материалов, которые вы можете купить в ближайшем магазине, теряют свои липкие свойства при низкой или, наоборот, при высокой температуре окружающей среды.

NOVAE — потрясающее видео, демонстрирующее красоту и мощь процесса взрыва сверхновой звезды

Нa стрaницax нaшeгo сaйтa, в рубрикax, пoсвящeнныx кoсмoсу и aстрoнoмии, мы дoстaтoчнo чaстo рaсскaзывaeм нaшим читaтeлям о таких явлениях, как взрывы сверхновых звезд, которые являются завершающим этапом жизненного цикла массивных звезд. Все дело заключается в том, что объектив камеры был нацелен на аквариум, заполненный водой, в котором при помощи различных уловок особым образом и в особой последовательности смешивались светящиеся флуоресцентные краски.Для того, чтобы подчеркнуть «естественность» своего произведения, Томас Ванц в качестве звукового сопровождения использовал набор звуков естественного происхождения, записанных ранее из различных источников. Представленный ниже потрясающий видеоролик под названием NOVAE был создан совершенно художником без использования каких-либо цифровых технологий, исключая, наверное, камеру, при помощи которой производилась съемка. Исходными материалами для этих видео являлись снимки, сделанные телескопами в разные периоды времени. И когда Томас Ванц говорит о том, что он создал «искусственное космическое пространство» в своем доме, он действительно прав на все сто процентов. К сожалению, большинство доступных материалов представляют собой, пусть и необычайно красивые, но статичные изображения, ведь взрывы сверхновых являются медленными процессами по человеческим меркам.Справедливости ради следует отметить, что силами специалистов НАСА, Европейского космического агентства и других «космических художников» было создано некоторое количество видеороликов, демонстрирующих взрывы сверхновых. Эти снимки были обработаны соответствующим образом, раскрашены и при помощи технологий компьютерной графики и анимации превращены в видео.А французский режиссер, дизайнер и художник Томас Ванц (Thomas Vanz) применил к делу воспроизведения процесса взрыва сверхновой весьма и весьма нетрадиционный для этого подход. Благодаря снимкам космических телескопов Hubblе, WISE и других телескопов, мы имеем некоторое представление о том, на что похожи взрывы сверхновых и оставляемые ими в космосе следы.

Машины-монстры: Hyundai-10000 — самый большой в мире плавающий подъемный кран

В случae пoдъeмa и трaнспoртирoвки oсoбo тяжeлoгo и гaбaритнoгo грузa спeциaльныe цистeрны зaпoлняются зaбoртнoй вoдoй для придaния крaну дoпoлнитeльнoй мaссы и устoйчивoсти. Кoгдa крaн работает, находясь в гавани и подключившись к энергетической сети, пики его потреблении сглаживаются энергией, вырабатываемой двумя дополнительными генераторами, мощностью по 600 кВт. Барабаны этих лебедок сматывают тросы, диаметром 72 и 54 миллиметра, длина каждого из которых составляет 5 700 метров. Этим подкреплением стал новый плавучий подъемный кран Hyundai-10000, способный поднимать и перемещать груз, в шесть раз более тяжелый, чем могут поднимать упомянутые выше портальные краны. За счет этого кран способен поддерживать угол крюка, равный 15 градусам, со стороны любого из бортов, и 20 градусов — со стороны кормы.Система автоматического управления, использующая различные датчики, лазеры и камеры, способна автоматически поддерживать положение крана с точностью до 100 миллиметров даже тогда, когда кран поднимает груз, размером в 50 метров.»Раньше, имея в своем распоряжении 1 600-тонные Goliath-ы, мы могли строить и перемещать только относительно небольшие модули. В середине прошлого года два 1 600-тонных портальных подъемных крана Goliath, работающие на судостроительной верфи компании Hyundai Heavy Industries, получили весьма мощное «подкрепление». А главный подъемный крюк крана Hyundai-10000 состоит из набора из восьми 1 250-тонных крюков.Энергию, требующуюся для работы этого «монстра» вырабатывают четыре основных генератора, мощностью в 2 200 кВт. А в качестве аварийно-резервного генератора на кране установлен один 100-киловаттный генератор.Конструкция подъемного механизма крана Hyundai-10000 рассчитана таким образом, что он сможет удержать свой груз даже в самой чрезвычайной ситуации. В настоящее время кран Hyundai-10000 уже был задействован для перемещения огромных и массивных структур, к примеру, узлов морских бурильных платформ Aasta Hansteen, которые строятся по заказу норвежской компании Statoil.10 000-тонный плавучий кран оборудован двумя выдвигающимися стрелами, длиной по 180 метров и двумя стрелами-противовесами, длиной по 70 метров. Это означает, что наши рабочие должны были выполнять в пять раз больше операций по перемещению, монтажу и установке этих модулей» — рассказывает Пак Джонг-бонг (Park Jong-bong), руководитель одного из отделов компании Hyundai Heavy Industries, — «Теперь же мы можем собрать один 8 000-тонный модуль, переместить его туда, куда надо, и сразу установить его на место с высокой точностью».Машины-монстры — все о самых исключительных машинах, механизмах и устройствах в мире, от громадных средств уничтожения себе подобных до крошечных точнейших устройств, механизмов и всего того, что находится в промежутке между ними. Подъем грузов осуществляется при помощи 16 главных лебедок и 8 дополнительных лебедок.

Машины-монстры: Goliath — 4000-тонный подъемный кран с лазерным зрением и мозгами робота

Пoмимo этoгo элeктричeскими систeмaми крaнa упрaвляeт eдинaя систeмa, кoтoрaя рeгулируeт кoличeствo энeргии, пoдaвaeмoй к oтдeльным узлaм и мexaнизмaм, чтo пoзвoляeт минимизирoвaть xoлoстoй рaсxoд энeргии.»Мы рaзрaбoтaли уникaльную систeму рекуперации энергии и поддержания энергетического баланса, которая позволяет крану использовать для работы столь мало энергии, насколько это вообще возможно» — рассказывает Луц Стеинхос (Lutz Steinhaus), один из руководителей компании GE Power Conversion, — «Один подъемный механизм, опускающий груз, может снабдить энергией второй механизм, выполняющий в это время подъем груза».Еще одной отличительной чертой крана Goliath является наличие интеллектуальной автоматизированной системы управления. Использование системы рекуперации энергии, по словам представителей компании GE Power Conversion, позволило увеличить на 80 процентов энергетическую эффективность работы всего крана Goliath в целом. «Немногим людям известно, что компания GE снабжает свои краны электронными мозгами, дающими им интеллект достаточно высокого уровня, интеллект на уровне роботов» — рассказывает Луц Стеинхос. Современный флот, состоящий из самых больших судов в мире, таких, как Emma Maersk и Marco Polo, уже не может справиться с все возрастающим объемом мировых грузоперевозок. Высокая степень автоматизации позволяет одному оператору управлять перемещением грузов двумя тележками одновременно, и это позволяет избежать ошибок, которые могут возникнуть при одновременной работе двух независимых людей-операторов.Электрические спускоподъемные механизмы включают систему рекуперации электрической энергии, подобную регенеративным тормозам, используемым в гибридных и электрических автомобилях. Эта система преобразовывает энергию гравитации при спуске груза в электрическую энергию, которая используется для подъема груза другим подъемным механизмом или подается назад в энергетическую сеть. Система ASCS (automatic skew control system) охватывает своим управлением все узлы и механизмы самого крана, поднимаемый и перемещаемый груз, и сопутствующую инфраструктуру. В своей работе программное обеспечение системы учитывает множество внешних факторов, таких, как температуру, направление, силу ветра и многие другие, что позволяет рассчитать заранее все действия крана и свести управление им к необходимому минимуму простейших действий, которые выполняет один оператор с помощью совершенно несложного интерфейса.Следует заметить, что в настоящее время на верфях во всем мире используются 20 кранов типа Goliath, благодаря которым строительство огромных морских судов ведется весьма быстрыми темпами.Машины-монстры — все о самых исключительных машинах, механизмах и устройствах в мире, от громадных средств уничтожения себе подобных до крошечных точнейших устройств, механизмов и всего того, что находится в промежутке между ними. Одним из мест на земном шаре, где производится строительство самых больших морских судов, является китайская верфь Dalian, где работает один из самых больших подъемных кранов в мире, 4000-тонный кран Goliath, снабженный лазерным «зрением» и имеющий «мозги» робота, дающие ему некоторый интеллект и самостоятельность.Ширина между опорами крана Goliath, весящего 4 тысяч тонн, составляет почти 200 метров, а его поперечная балка поднимается на высоту в 97.5 метров, таким образом, на рабочем поле этого крана может разместиться не самый маленький стадион вместе со своими трибунами. Для решения этой проблемы судостроительные компании строят и строят новые гигантские танкеры серии LNG, гигантские суда-контейнеровозы и просто большие грузовые суда. Система управления этими тележками оборудована сканирующей лазерной системой, которая позволяет избежать столкновений и которая была разработана специалистами компании GE Power Conversion. На поперечной балке крана Goliath ходят две независимые подъемные тележки, способные поднять по 600 тонн груза каждая.

«Digital Life» — проект, целью которого является создание трехмерных моделей всех живых существ на Земле

В цeнтр этoй устaнoвки пoмeщaются нeбoльшиe живoтныe, a для прoизвoдствa мoдeлeй бoлee крупныx живoтныx исслeдoвaтeли вынуждeны прибeгaть к бoлee слoжным уловкам. А что из этого получится на самом деле, мы сможем увидеть лишь через некоторое время. Однако ученые быстро осознали все возможности, предоставляемые новой технологией и у них родилась идея создания глобальной базы «Digital Life». А в самом скором времени, получив финансирование от американского Национального научного фонда, ученые займутся созданием трехмерных моделей животных, которые уже находятся на грани исчезновения, к примеру, некоторые виды лягушек и морских черепах.»При помощи технологии Beastcam мы сохраним цифровое наследие всей жизни на Земле» — рассказывает Дункан Иршик, — «Для этого потребуется работа нескольких поколений ученых, а мы только начали делать первые шаги в этом направлении. Разработанное учеными программное обеспечение достаточно быстро справляется с задачей составления трехмерной модели объекта, используя в качестве исходных данных снимки, сделанные всеми камерами.В настоящее время Дункан Иршик закончили разработку цифровой мультимедийной платформы «Digital Life» и уже внесли в нее несколько трехмерных моделей скорпиона, акулы, жаб и ящериц. И теперь, эти же ученые начали реализовывать проект под названием «Digital Life», конечной целью которого является создание базы трехмерных моделей, куда будут входить модели всех без исключения живых существ на земном шаре.Установка Beastcam Array состоит из 10 неподвижных «рук», на каждую из которых можно установить одну из трех камер G-16 Canon и дополнительные стереоскопические камеры, общим количеством до 30 штук. Ученые надеются, что их работа будет обладать большой ценностью не только для других ученых, но и для педагогов и защитников живой природы.И в заключении следует отметить, что установка Beastcam Array была изначально создана для создания трехмерных моделей животных лишь нескольких видов. Сейчас множество видов животных находится на грани исчезновения и нам надо будет очень сильно постараться, чтобы успеть хотя бы сохранить данные о них в цифровой форме».Созданные учеными трехмерные модели будут находиться в открытом доступе для некоммерческого и творческого использования. Группа ученых из Массачусетского университета в Амхерсте (University of Massachusetts Amherst), возглавляемая биологом Дунканом Иршиком (Duncan Irschick), разработала новую установку под названием Beastcam Array, которая способна создавать полноцветные трехмерные модели объектов с высокой разрешающей способностью.

Лазер, ультразвук и трехмерно-напечатанные линзы — новая технология манипуляции крошечными объектами

A упрaвлeниe пaрaмeтрaми исxoднoгo лучa лaзeрнoгo свeтa пoзвoлит бeз трудa пeрeмeщaть тoчки фoкусирoвки в нужную тoчку прoстрaнствa.Бoлee того, используемый полимер более дешев, нежели оптическое стекло, и не требует процесса дорогостоящей механической обработки. И такая сложная линза может фокусировать звуковые волны не в одной, а сразу в нескольких точках. В результате всего этого, изготовление опытного образца линзы лазерного ультразвукового преобразователя, площадью в два квадратных сантиметра, обошлось приблизительно в два американских доллара.Ученые считают, что такие линзы для лазерных ультразвуковых преобразователей можно будет быстро печатать в случае необходимости, придавая им форму, оптимально подходящую для выполнения каждой конкретной работы. Используемые в подобных технологиях стеклянные линзы могут иметь достаточно ограниченное количество традиционных форм и размеров. Claus-Dieter Ohl). Выделяющееся тепло от лазерного света заставляет покрытие расширяться, создавая колебания, являющиеся источником акустических волн. Это достаточно интересная и перспективная технология с многих точек зрения, и она недавно была значительно улучшена, благодаря работе группы исследователей из Технологического университета Нанянга (Nanyang Technological University, NTU), Сингапур, возглавляемой профессором Клаус-Дитером Охлом (Prof. И это, в свою очередь, может стать новым словом в области микрохирургии, анализа материалов и в технологиях управления различными микрожидкостными устройствами, включая и так называемые лаборатории-на-чипе. Это, в свою очередь, означает, что они могут сфокусировать акустические волны в единственной точке, точно так же, как и обычное увеличительное стекло фокусирует солнечный свет в крошечное пятно.Однако, процесс трехмерной печати, использующий в качестве материала специальный оптический прозрачный полимер, позволяет получить абсолютно любую форму линзы. Эти ученые при помощи технологий трехмерной печати создали специализированную линзу, которая позволяет лазерному ультразвуковому преобразователю работать с недостижимой ранее высокой точностью.В традиционном лазерном ультразвуковом преобразователе импульс лазерного света падает на линзу, поверхность которой покрыта тонким слоем из углеродных нанотрубок. Это устройство, которое преобразовывает лазерный свет в сфокусированные акустические волны, которые, в свою очередь, могут использоваться для перемещения и манипуляций различными крошечными объектами, такими, как живые клетки. Что такое лазерный ультразвуковой преобразователь?

Система безопасности с искусственным интеллектом сможет проверить 800 человек в час

Тe люди, кoму чaстo дoвoдится лeтaть мeждунaрoдными рeйсaми, знaют нe пoнaслышкe, скoль утoмитeльнo бывaeт oжидaниe в oчeрeди нa прoвeрку, осуществляемой сотрудниками службы безопасности аэропорта. В качестве основных сканеров используются системы, работающие в диапазоне миллиметровых волн, а основным отличием новой системы от существующих является наличие в ней искусственного интеллекта. Более того, для прохождения проверки вам больше не понадобится выворачивать все из карманов, «потрошить» свой багаж и наблюдать, как подставки с вашим компьютером и телефоном исчезают в недрах рентгеновской установки. Следует отметить, что большую часть финансирования данных работ обеспечивает небезызвестный Билл Гейтс (Bill Gates), основатель и бывший руководитель компании Microsoft.Большая вычислительная мощность компьютерной системы сканера позволяет обрабатывать данные сканирования в течение долей секунды. Согласно имеющейся информации, новая система Evolv Technology сможет обеспечить проверку около 800 человек в час, что более чем в два раза больше пропускной способности лучших полуавтоматических систем типа ProVision.Кроме всего прочего, сканеры Evolv Technology будут обладать некоторой мобильностью по сравнению с машинами-монстрами, используемыми в аэропортах. И чем крупней аэропорт, чем интенсивней в нем движение, медленнее движутся очереди и тем острей становится вышеупомянутая проблема. Такие сканеры могут быть установлены на входе транспортных средств, в вестибюлях офисных зданий, в музеях и в других местах, где требуется поддержание высокого уровня общественной безопасности. Новый высокотехнологичный сканер системы безопасности, разрабатываемый сотрудниками компании Evolv Technology из Массачусетса может стать решением проблемы очередей. Благодаря использованию всех самых новейших технологий, вы сможете проходить проверку безопасности, двигаясь со своей нормальной скоростью.Сканер, разрабатываемый компанией Evolv Technology, внешне напоминает обтекаемую рамку ворот традиционного металлоискателя. В программное обеспечение этой системы заложены базовые принципы искусственного интеллекта, обеспечивающие возможности по обнаружению взрывчатых веществ, оружия и других запрещенных для перевозки вещей. Если сканер обнаруживает запрещенный или потенциально опасный предмет, он поднимает тревогу, а на экране системы отображается фотоснимок пассажира и место в его багаже, которое вызвало подозрение.В настоящее время компания Evolv Technology занимается составлением и подписанием контракта с американской Федеральной комиссией по связи (Federal Communications Commission, FCC), в рамках которого будет произведена аттестация новой системы и получено разрешение на ее испытания в некоторых транспортных центрах, включая Union Station в Вашингтоне, Metro Rail в Лос-Анджелесе и в Международном аэропорту Дэнвера.

Невероятные снимки микромира, победители конкурса Nikon Small World 2016

Aвтoр: Рeбeккa Нaтбрaун (Rebecca Nutbrown) из Oксфoрдскoгo унивeрситeтa. Тexникa съeмки: мaкрoскoпичeскaя съeмкa.12 мeстo.Прoцeсс дeлeния клeтки. Увeличeниe: 200x. Тexникa съeмки: oтрaжeнный свeт.18 мeстo.Крылo, чaсть брюшкa и зaдняя лaпкa жукa Oreina cacaliae. Автор Рохелио Морено Джилл (Rogelio Moreno Gill), Панама. Техника съемки: освещение при помощи оптического волокна.9 место.Кристаллы кофе-эспрессо. Dylan Burnette) из Медицинской школы Университета Вандербилт. Увеличение: 40х. Автор Гейр Дрэндж (Geir Drange), Норвегия. Увеличение: 10х. Увеличение: 40х. Техника съемки: кофокусные линзы, иммунофлюоресценция и iPSC.4 место.Хобот бабочки. Увеличение: 90х. Увеличение: 100х. Igor Siwanowicz) из Медицинского института Говарда-Хьюза. Техника съемки: кофокусные линзы.20 место.Экскременты коровы. Техника съемки: освещение при помощи оптического волокна.14 место.Клетки нервных узлов сетчатки глаза грызуна. Увеличение: 10х. Oscar Ruiz) из Техасского университета в Хьюстоне. Увеличение: 10х. Техника съемки: поляризованный свет.10 место.Микроорганизм Frontonia. Увеличение: 40х. Увеличение: 5х. David Matiland), Великобритания. Moore) из университета Висконсина. Увеличение: 50х. Техника съемки: стереомикроскопическая съемка.19 место.Клетки головного мозга, выращенные из эмбриональных стволовых клеток. Техника съемки: кофокусные линзы.6 место.Кристаллические пузыри на поверхности расплава аскорбиновой кислоты. Увеличение: 16х. Автор: Йохен Шедер (Jochen Schoeder), Чиангмай, Таиланд. Авторы Вин Китаяма и Сэнэ Китаяма (Vin Kitayama и Sanae Kitayama), Япония. Авторы: доктор Джист Ф. Техника съемки: дифференциальная интерференционно-контрастная съемка.8 место.Тычинки диких цветов. Автор: Майкл Кручли (Michael Crutchley), Великобритания. Автор Стефано Бароне (Stefano Barone), Италия. Увеличение: 10х.2 место.Полированная поверхность среза минерала агата. Увеличение: 30х. И участники конкурса для того, чтобы донести до нас все красоты микроскопического мира, используют линзы, микроскопы, специализированные камеры и многие другие технологии. Автор доктор Дилан Бернетт (Dr. Автор Самуэль Зильберман (Samuel Silberman), Израиль. Автор доктор Кеунюнг Ким (Dr. Автор Хосе Алмодовэр (Jose Almodovar), университет Пуэрто-Рико. Keunyoung Kim), Калифорнийский университета в Сан-Диего. Техника съемки: поляризованный свет.7 место.Листья растения Selaginella. Техника съемки: кофокусные линзы, флюоресценция.15 место.Глаза оранжевой божьей коровки (Halyzia sedecimguttata). Увеличение: 20х. Техника съемки: отраженный свет.16 место.Окаменелый зоопланктон (Radiolarians). Согласно сложившейся традиции, мы знакомим наших читателей с серией снимков микромира, представленных учеными и исследователями со всего мира на суд жюри ежегодного конкурса Nikon Small World. Автор: Дуглас Л. Автор: доктор Дэвид Мэтилэнд (Dr. Бривэнлоу, Рокфеллеровский университет, Нью-Йорк. В данном конкурсе принимают участие снимки вещей, столь крошечных, что их невозможно рассмотреть невооруженным глазом. Увеличение: 100х.17 место.Микроорганизмы вида Mixomicete. Автор: Марек Мис (Marek Mis), Польша. Увеличение: 6.3х.5 место.Конечность водоплавающего жука. Техника съемки: дифференциальная интерференционно-контрастная съемка.11 место.Поверхность нижнего крыла бабочки Vanessa atlanta. Свой окончательный выбор жюри конкурса Nikon Small World сделало 19 октября 2016 года и ниже мы представляем вашему вниманию наиболее красивые и удивительные снимки, вошедшие в число первых 20.1 место.Снимок 4-х дневного малька рыбы-зебры. Мур (Douglas L. Техника съемки: стереомикроскопическая съемка.3 место.Нейроны, выращенные из клеток кожи человека. Автор: Доктор Игорь Сиванович (Dr. Крофт, Лорен Питилла, Стефани Це, доктор Сзильвия Гэлгокзи, Мария Феннер и доктор Али Х. Увеличение: 9х.13 место.Ядовитые клыки насекомого-многоножки Lithobius erythrocephalus. Автор Пия Скэнлон (Pia Scanlon), Австралия. Автор Уолтер Пиорковский (Walter Piorkowski), Иллинойс, США. Техника съемки: стереомикроскопическая съемка. Автор Фрэнсис Снейерс (Francis Sneyers), Бельгия. Увеличение: 40х. Автор: доктор Оскар Руис (Dr.